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Abstract
We propose a renormalization group (RG) scaling function which is constructed
from q-deformed fermionic versions of Virasoro characters. By comparison
with alternative methods, which take their starting point in the massive
theories, we demonstrate that these new functions contain qualitatively the
same information. We show that these functions allow for RG-flows not only
amongst members of a particular series of conformal field theories, but also
between different series such as N = 0, 1, 2 supersymmetric conformal field
theories. We provide a detailed analysis of how Weyl characters may be utilized
in order to solve various recurrence relations emerging at the fixed points of
these flows. The q-deformed Virasoro characters allow furthermore for the
construction of particle spectra, which involve unstable pseudo-particles.

PACS numbers: 11.10Kk, 05.30.−d, 05.70.Jk, 11.10.Hi, 11.25.Hf, 11.30.Er,
11.55.Ds, 64.60.Fr

1. Introduction

Renormalization group (RG) methods have been developed [1] to carry out qualitative studies
of regions of quantum field theories which are not accessible to perturbation theory in
the coupling constant. For theories in 1 + 1 space–time dimensions these methods admit
particularly powerful realizations in the form of explicit constructions of scaling functions.
Such functions may be obtained from the thermodynamic Bethe ansatz (TBA) [2], from
correlation functions involving various components of the energy–momentum tensor [3, 4] or
from semiclassical studies [5]. In general, the functions obtained from different approaches
differ quantitatively, but nonetheless possess the same qualitative features. It is clear that
they are different, since their conceptual origin is also not the same. In the TBA-context,
these functions have been coined to be scaling functions reflecting the very fact that the
characterizing parameter controls the size of the system. This is, of course, different from the
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c-theorem formulation in [3, 4], where the RG-parameter is related to the distance between the
two operators in the correlation function. Despite this all these functions share some common
features which can be characterized as follows.

We consider a unitary quantum field theory which contains asymptotically stable particles
of mass mi and unstable particles of mass Mi. In addition, we assume that there are no particles
associated with asymptotic massless states in the spectrum. Then the scaling function c(r)

parametrized by a dimensionless RG-parameter r has the following properties:

(i) It coincides with the Virasoro central charge c of the ultraviolet conformal field theory for
vanishing r,

lim
r→0

c(r) = c. (1)

(ii) It is non-increasing along the RG-flow.

(iii) It is stationary at RG fixed points and acquires at these points the Virasoro central charge
of specific conformal field theories,

c(r) = cij = const mi,Mi � 2

r
� mj,Mj . (2)

(iv) It vanishes in the infrared,

c(r) = 0
2

r
� mi,Mi. (3)

There is yet another proposal to construct such type of functions, namely as ‘Bailey
flow’ [6] between different series of Virasoro characters. However, so far it has neither been
established whether the functions constructed in this fashion satisfy properties (i)–(iv) nor has
it been clarified in which way they are related to a massive quantum field theory.

In the following we shall be constructing a scaling function which also flows between
certain Virasoro characters. In addition to the flows provided in [6], we will not only propose a
flow between several distinct series, such as for instance from N = 2 superconformal theories
to N = 1 superconformal theories, but also realize the flows within a particular series itself.
Our flows are manifested by means of q-deformed Cartan matrices which simulate a control of
the energy scales of unstable particles. We establish that the proposed function indeed satisfies
properties (i)–(iv) and in addition relates it to a concrete massive quantum field theory with an
explicitly known scattering matrix.

Our manuscript is organized as follows: in section 2 we recall how certain recurrence
relations emerge from a saddle point analysis of fermionic versions of Virasoro characters,
which involve data of the massive theory, namely the phase of the scattering matrix, and
how their solutions are related to the effective central charge. We show that various series
may be realized in terms of the homogeneous sine–Gordon (HSG) models. In section 3
we present a q-deformed version of the analysis in section 2 and demonstrate how the HSG
realization allows for a flow amongst various models governed by the mass scales of the
unstable particles. The analysis in this section is mainly carried out numerically. Section 4
is devoted to the explicit analytic solutions at the plateaux in terms of principally specialized
Weyl characters. We present here various cases which have not been considered before. In
section 5 we demonstrate how the q-deformed characters may be associated with particle
spectra, which also involve unstable pseudo-particles. Our conclusions are stated in section 6.
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2. The TBA from the massive and massless sides

Let us first recall some well-known facts in order to assemble the relevant equations and
to establish our notation. We consider a Virasoro character in the so-called ‘fermionic
version’1 [7]

χ(q) =
∞∑

�m∈S

q �mM �mt/2+ �m· �B
l∏

i=1

[
( �m(1 − M))i + B ′

i

mi

]
q

. (4)

Here we employ the standard abbreviation for Euler’s function (q)m with (q)0 = 1 and the
Gaußian polynomial (q-binomial), see e.g. [8], for the integers n and m with 0 � m � n,

(q)m :=
m∏

k=1

(1 − qk) and

[
n

m

]
q

:= (q)n

(q)m(q)n−m

. (5)

The main characteristics of expression (4) for the character χ(q) are the real symmetric (l× l)-
matrix M and the vector �B ′ with B ′

i = ∞ for 1 � i � l − l′, B ′
i = 0 for l − l′ < i � l, with

l′ being a non-negative integer smaller than l. The specific form of the vector �B distinguishes
between different highest weight representations, which share of course the same Virasoro
central charge c. There might be restrictions on the set S in which �m takes its values, which
usually reflect some of the symmetries in the model.

The important thing for us to note is that once χ(q) is of the generic form (4), one may
employ the techniques originally pursued in [9] and carry out a saddle point analysis to extract
the leading order behaviour. As a result of this, the effective central charge, i.e. ceff = c−24h′

with h′ being the smallest conformal dimension occurring in the theory (h′ = 0 in unitary
models), is expressed in a rather non-obvious way. For the character of the particular form
(4), this analysis was performed first in [7], leading, after a suitable variable transformation,
to the saddle point conditions

1 − xA =
l∏

B=1

(xB)
MAB and 1 − yA =

l∏
B=1+l−l′

(yB)
M ′

AB . (6)

At this stage xA and yA are just the integration variables occurring in this context (for details
see e.g. [7, 9]). The matrix M ′ is a submatrix of M of dimension (l′ × l′). The remaining
y’s which do not occur in these equations are taken to be 1, i.e. yA = 1 for 1 � A � l − l′.
One should also note that, since in this analysis sums are converted into integrals, the specific
structure of the set S does not affect the outcome of the computation and may therefore
be ignored for our purposes. The leading order behaviour at the extremum point yields the
effective central charge

ceff = 6

π2

l∑
A=1

(L (1 − xA) − L (1 − yA)) (7)

in terms of Rogers dilogarithm L(x) = ∑∞
n=1 x

n/n2 + ln x ln(1 − x)/2 (for properties see e.g.
[10]). Once ceff is rational, system (6) and (7) is referred to as ‘accessible’ dilogarithms (for
a review see e.g. [11] and references therein), which from the mathematical point of view is a
rather exceptional situation.

The important point to note here is that the saddle point analysis does not rely upon the
fact that the matrices M and M ′ are constant. It is this feature which we shall exploit below.
1 In fact this terminology is slightly misleading, since they are not intrinsically fermionic. This name originated from
the construction of fermionic pseudo-particle spectra. However, it is also possible to construct from (4) pseudo-particle
spectra related to all kinds of general statistics.
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2.1. g|g̃-theories

Intriguingly the same set of equations (6) and (7) may also be obtained when we commence
with the massive instead of the conformal side. We start from a scattering matrix SAB(θ),
as a function of the rapidity, θ , between particles of type 1 � A,B � l. Performing then
a thermodynamic Bethe ansatz analysis [2] one ends up with a set of non-linear integral
equations in the pseudo-energies as functions of the rapidities, the so-called TBA-equations.
We then assume that the S-matrix is such that it leads to regions in the TBA-equations in which
the pseudo-energies are constant. In general, this happens when the scattering matrix does not
depend on the effective coupling constant. In that situation, the thermodynamic Bethe ansatz
leads to a set of coupled equations coinciding precisely with the ones in x in (6). All y’s may
be thought of as being 1 in this case. The matrix M in (4) is now directly related to the massive
models containing the information about the scattering matrix,

MAB = δAB − 1

2π i
lim
θ→∞

ln(SAB(θ)SBA(θ)). (8)

Reversing the argument, relation (8) means that one has identified a quantity within the
conformal field theory which carries the data of the phase of the S-matrix.

In the following we will consider theories in which MAB is related to a Lie algebraic
structure. For this purpose we give the quantum numbers A,B, which describe the particle
type, an additional substructure. We identify each particle by two quantum numbers, i.e.
A = (a, i), such that the scattering matrices are of the general form S

ij

ab(θ). We associate
the main quantum numbers a, b to the vertices of the Dynkin diagram of a simply laced Lie
algebra g of rank � and the so-called colour quantum numbers i, j to the vertices of the Dynkin
diagram of a simply laced Lie algebra g̃ of rank �̃. We refer to these theories as g|g̃. The
S-matrices constructed in [12] are of the type

S
ij

ab(θ) = eiπεijK
−1
āb exp

∫ ∞

−∞

dt

t

(
2 cosh

πt

h
− Ĩ

)
ij

(
2 cosh

πt

h
− I

)−1

ab

e−it (θ+σij ) (9)

with I, Ĩ being the incidence matrix of g, g̃, respectively. Here εij is the Levi-Civita
pseudotensor, h is the Coxeter number of g and σij = −σij are the resonance parameters. As
special cases of this S-matrix we have the g|A1 and An|g̃ theories which correspond to the
minimal affine Toda theories and the g̃n+1-HSG models [13]. As may be seen easily from (9),
the M-matrix for these models is

M
ij

ab = K−1
ab K̃ij (10)

with K, K̃ being the Cartan matrices of g, g̃, respectively (see also [12]). The special case
g|A1 was first treated in [14]. S-matrices for g̃ also to be non-simply laced were proposed
in [15]. It remains an open question, apart from g|A1, how to allow also g to be non-simply
laced.

2.2. g|g̃-coset theories

The full system (6) and (7), involving a non-trivial M ′-matrix, can be associated in general
with a non-diagonal scattering matrix on the massive side. A straightforward identification
between M and the scattering matrix such as in (8) is not possible in this case. However, within
the thermodynamic Bethe ansatz analysis the equations are diagonalized and decoupled, such
that at the fixed points they acquire precisely the form (6). In many prominent cases the M
and M ′ matrices involve Lie algebraic quantities in the form of (10). Noting this point, many
models can be realized formally in terms of g|g̃-cosets.
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2.2.1. Unitary minimal models. The series of unitary minimal models, usually denoted
by M(k, k + 1) [16], constitute an extremely well-studied and prominent class of conformal
field theories. It is well known [17] that they may, for instance, be realized by the cosets
SU(2)k ⊗ SU(2)1/SU(2)k+1 or SU(k + 1)2/SU(k)2 ⊗ U(1), which are related to each other
by level-rank duality [18]. Recalling the fact [17] that each extended simple Lie algebra g, a
Kac–Moody algebra ĝ of level k contributes positively or negatively k dim g/(k + h) (h being
the Coxeter number of g) to the total central charge, depending on whether it is part of the
algebra or subalgebra, respectively, one obtains the famous sequence

c = 1 − 6

(k + 2)(k + 3)
k = 1, 2, 3, . . . . (11)

Including now the relevant U(1)-factors, we may also obtain the series (11) from a coset of
two g|g̃-theories

A1|A⊗2
1 ⊗ Ak−1|A1/Ak|A1 ⇔ A1|Ak/A1|Ak−1 (12)

in the ultraviolet limit. We formally view A1|A0 and A0|A1 as unity I contributing 0 to the
central charge. Relation (12) allows for various interpretations with regard to the realizations
of several RG-flows. We note that both theories on the lhs do not contain any unstable particle.
A flow between cosets parametrized by different k’s may then be achieved in the so-called
massless way as roaming trajectories in the spirit of [19]. On the other hand, the realizations
in the form of the rhs of (12) constitute theories which contain unstable particles. Therefore, a
flow between cosets related to different k’s is achievable in a well-controllable fashion over the
different energy scales of the unstable particles as observed in [4, 20–23] for the HSG-models.
For vanishing resonance parameters σij the system on the rhs of (12) leads to the same constant
TBA-equations as found for the RSOS-models [24]. In addition, following the RG-flow of
the scaling function of the TBA one observes that at the fixed points, the set of equations (6)
is also obtained for finite values of the resonance parameters.

Of course, these coset realizations are not unique and one may, for instance, also obtain
(11) from the quaternionic projective space HPk [17] or use various exceptional Lie algebras
to construct particular theories. This ambiguity allows for various other realizations in terms
of different combinations of HSG-models.

2.2.2. Unitary N = 1 super conformal field theories. The series of N = 1 unitary minimal
models MN=1(k, k + 1) has played an important role in the construction of certain string
theories. It may be realized, for instance, by the cosets SU(2)k ⊗ SU(2)2/SU(2)k+2 or
SU(k + 2)2/SU(k)2 ⊗ SU(2)2 [17]. The corresponding series for the Virasoro central charge
is

c = 3

2
− 12

(k + 2)(k + 4)
k = 1, 2, 3, . . . . (13)

Once again we may include the relevant U(1)-factors and also construct the MN=1(k, k + 1)
models from several g|g̃-theories, for instance

Ak−1|A1 ⊗ A1|A⊗3
1 /Ak+1|A1 ⇔ A1|Ak+1/A1|Ak−1 ⊗ A1|A1. (14)

In the ultraviolet limit they posses central charges of the form (13). Once again we note that
there is a realization which involves unstable particles, i.e. the rhs of (14), and one which does
not, i.e. the lhs of (14).
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2.2.3. Unitary N = 2 super conformal field theories. The series of N = 2 unitary minimal
models MN=2(k, k + 1) is omnipresent in string theory [25] (for a recent review see e.g.
[26]). It may be realized by the cosets SU(2)k ⊗ U(1)/U(1) or SO (2k)2/SU(k)2 with the
corresponding series of the Virasoro central charge

c = 3k

2 + k
k = 1, 2, 3, . . . . (15)

Including the relevant U(1)-factors, we construct from several g|g̃-theories the realizations

Ak−1|A1 ⊗ A3|A1 ⇔ A1|Dk+1/A1|Ak−1. (16)

In the ultraviolet limit they also lead to (15). A further possibility, which we shall exploit in
section 3.4, to obtain (15), is to use the coset A1|Dk+2/A1|Ak−1 ⊗ A1|A⊗2

1 . Once again we
note that there is a realization which involves unstable particles, i.e. the rhs of (16), and one
which does not, i.e. the lhs of (16).

2.2.4. Gk ⊗ Gl/Gk+l-cosets. The Gk ⊗ Gl/Gk+l-cosets are the more general theories
which encompass various models. For instance, taking G = SU(2) and setting l = 2 or
l = k − 2, k = 1, one obtains the MN=1(k, k + 1) or M(k, k + 1)-models, respectively.
Massless flows related to these models were investigated in [19]. Once again there exists a
realization in terms of HSG-models,

Ak−1|G ⊗ Al−1|G ⊗ A1|A⊗2�
1 /Ak+l−1|G (17)

such that we may also reproduce these flows by means of a variation of the energy scales of the
unstable particles. Here � is still the rank of the Lie algebra g. We will not perform a detailed
investigation of these theories which go beyond the MN=1(k, k + 1) or M(k, k + 1)-models,
but from the following analysis it will become apparent that the existence of realization (17)
allows for an analogue treatment, when taking the non-unitary nature of many of these models
into account.

3. RG-flow from q-deformed Virasoro characters

We now wish to introduce a mass scale. Recalling [27, 28] that the recurrence relations (6)
may be solved by means of principally specialized Weyl characters, a natural conjecture is to
suspect that a deformation of these expressions leads to a correct description of the massive
theories in the sense of the full TBA-equations. Making this concrete seems a rather difficult
task and we therefore construct a scaling function in a different way, but nonetheless in the
spirit of the renormalization group ideas. Instead of using a different parametrization for
the principally specialized Weyl characters, we deform the Virasoro characters (4) in a very
natural way. As was already pointed out in the previous section, the saddle point analysis which
leads to equations (6) and (7) does not depend on the fact whether the matrix M is constant
or variable. We can exploit this by introducing mass scales in a rather suggestive fashion.
Restricting ourselves to the large class of simply laced g|g̃-theories and cosets constructed
from these theories as in section 2.2, we replace now the M-matrix by a q-deformed version[

M
ij

ab

]
q

:= [Kab]−1
q [K̃ij ]q̃ij (18)

with

[Kab]q := Kabq = αa · αbq = αa · αb exp(−mr/2) (19)

[K̃ij ]q̃ij := 2δij − [Ĩ ij ]q̃ij = α̃i · α̃j q̃ij = α̃i · α̃j exp
(−mr/2(1 − δij )e|σij |/2) . (20)
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Here αi, α̃i are the simple roots of g, g̃, respectively. In other words, we re-defined the usual
scalar product between the simple roots or equivalently q-deformed the roots themselves.
The bracket [ ]q is not to be confused with the usual notation of q-deformed integers. Q-
deformations of a different nature have recently played an important role in the context of
the formulation of consistent expressions for scattering matrices of affine Toda field theories
related to non-simply laced Lie algebras [29]. For the case at hand the q-deformation is
mainly inspired by the physics of the unstable particles. The natural mass scale of the unstable
particle mc̃ ∼ mr/2e|σij |/2, with σij playing the role of a resonance parameter and m of an
overall mass scale, is introduced in K̃ in such a way that for σij → ∞, the Cartan matrix of
g̃ decouples according to the ‘cutting rule’ analysed in [23]. Note that for mr/2eσij /2 � 1 we
have [K̃ij ]q̃ij ≈ K̃ij , such that the decoupling takes place at the same scale as in the massive
models (see e.g. equation (51) in [20] and also [4, 23]). In addition, we would like the particles
to be massless in the infrared. Recalling that the masses of the affine Toda field theories can
be organized in the form of the Perron–Frobenius vector of the Cartan matrix, deformation
(19) achieves this goal. In the limit r → 0 we recover the usual Cartan matrix.

Of course, the deformations of types (19) and (20) are not unique and one could try to find
different realizations in order to construct scaling functions. However, from the arguments
just outlined they appear to be the most natural ones.

3.1. g|g̃ -theories

Equipped with matrices (19) and (20), the q-deformed version of (4) acquires the form

χ(q, r, �m, �σ ) =
∞∑

�k=0

q
1
2
�k[M]{r, �m,�σ }�kt+�k· �B

(q)k1 . . . (q)kn
. (21)

For simplicity we took here l′ to be zero. We collect the �̃− 1 linearly independent resonance
parameters in the vector �σ and the � independent mass scales in �m. The RG scaling parameter
is denoted by r. To obtain the recurrence relations in a more symmetric way it is convenient to
introduce the variables xi

a = ∏�
b=1

(
Qi

b

)−Kab . In terms of the q-deformed analogues to these

variables,
[
xi
a

]
q

= ∏�
b=1

(
Qi

b

)−[Kab]q , the saddle point analysis of (21) leads to

�∏
b=1

Qi
b(r, �m, �σ )−[Kab]q +

�̃∏
j=1

Qj
a(r, �m, �σ )−[K̃ ij ]q̃ij = 1 (22)

together with the associated scaling function

cg|g̃(r, �m, �σ) = 6

π2

�∑
a=1

�̃∑
i=1

L

 �̃∏

j=1

Qj
a(r, �m, �σ)−[K̃ ij]qij


 . (23)

The recurrence relations (22) now play an analogous role to the TBA-equations. In order to
make our main point, namely that (23) indeed constitutes a scaling function which reproduces
the characteristic features of the theory, like the ones obtainable from the conventional TBA,
the scaled version of the c-theorem or a semiclassical analysis, we have to establish that
cg|g̃(r, �m, �σ) indeed satisfies properties (i)–(iv) in the introduction.

Most straightforward to prove are the properties related to the extremal limits. Property
(i) is easily established since by construction cg|g̃(0, �m, �σ ) is the ultraviolet Virasoro central
charge. Property (iv) follows from the following argument: let us first assume in (22) that the
Qi

a are finite for r → ∞. Then taking this limit leads to 1 +
(
Qi

a

)−2 = 1, such that our initial
assumption cannot hold and we deduce that limr→∞ Qi

a ∼ ∞. When we want to avoid that
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the scaling function (23) becomes complex we have to assume that the Q’s are real. Additional
support for this assumption will be provided below just based on the structure of (22) and a
possible physical interpretation. Thus taking now Q ∈ R each term on the lhs of (22) has to
be smaller than 1, such that we deduce for the infrared asymptotics of the first term

lim
r→∞ e−mr/2

∑
b

Kab lnQi
b = 0. (24)

Excluding the exotic case
∑

b Kab lnQi
b = 0, we demand the behaviour (24) for each term in

the sum and conclude that the second term in (22) is zero such that with L(0) = 0 we finally
conclude that property (iv) holds.

The other properties are less straightforward to prove in complete generality and we will
be content to establish them on the basis of explicit case-by-case examples.

3.2. A1|g̃ ≡ g̃2-HSG

The A1|g̃-theories are good theories to start with, since they do not involve any stable particle
fusing structure. In addition, several scaling functions have been obtained by a TBA analysis
[20] and also from the scaled version of the c-theorem [4, 23], such that we already have data
available to compare with. Equations (22) in this case simply become

Qi(r,m, �σ)2 = Qi(r,m, �σ)2−2q +
�̃∏

j=1

Qj(r,m, �σ )[Ĩ ij ]qij . (25)

It is useful to treat the case g̃ = A1 separately, since it corresponds to the free fermion.

3.2.1. The free fermion. The free fermion is analytically solvable in several approaches and
is therefore an ideal example to illustrate that the various scaling functions are quantitatively
different but contain qualitatively the same information. Equation (25) in this case simply
becomes Q2 = Q2−2q + 1. It is not possible to solve this relation analytically, but near the
ultraviolet we may approximate q ≈ 1 such that its solution becomes Q ∼ √

2 for rm/2 � 1,
and therefore

cA1|A1(rm) ∼ 6

π2
L (1/2) = 1

2
for rm/2 � 1. (26)

We can compare this with the scaling function obtained as an exact solution of the full TBA
analysis

cTBA(rm) = 6rm

π2

∞∑
n=1

(−1)n
K1(nrm)

n
∼ 1

2
for rm/2 � 1 (27)

where K1 is a modified Bessel function. The latter estimate follows from K1(rm) ∼ 1/rm
for rm/2 � 1 and the fact that L (−1) = −12/π2. This means that in the main region of
interest these two functions coincide. It is also clear that for large rm both functions vanish.

In addition, we may compare with the scaling function obtained from the c-theorem

cc-th(rm) = 3

2

∫ ∞

rm

ds s3
(
K1(s)

2 − K0(s)
2
) ∼ 1

2
for rm/2 � 1 (28)

which shows a similar behaviour. Note that despite the fact that we use rm in (26)–(28)
the meaning of this parameter is different in each context. For our purposes it is simply a
dimensionless variable.

Let us now establish property (ii) for this case. This illustrates at the same time the
general procedure which works, in principle, for all other situations. Since we know that
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Figure 1. RG flow from q-deformed Virasoro characters.

Q(r = 0) = √
2 and limr→∞ Q → ∞, we just have to establish that Q(r) does not posses a

minimum or maximum in order to establish its monotonic behaviour. We compute from (25)
the derivative Q′ = q lnQ/(2Q2q−1 − Q−1(2 − 2q)). Obviously, for finite values of Q, this
only vanishes for Q = 1, which is however not a solution of (25). Therefore Q does not have
an extremum and property (ii) holds. Property (iii) holds trivially in this case.

3.2.2. g̃ �= A1. For the other cases one may, in principle, proceed in a similar fashion, but
already for the case A1|A2 the analysis becomes rather messy. For instance, computing the
derivative in this case, we find that it only vanishes for Q = (

1
2 exp(mr/2(1 − exp(σ/2) +

σ/2))
)1/(2−2q−q̃)

. Substituting this back into (25) we find for a fixed value of σ a specific
value of r such that the equation is satisfied. We may then compute the second derivative
and establish that this value corresponds to a saddle point, which, in comparison with our
numerical solution exhibited in figure 1, is indeed situated on the second plateau.

Since an analytic solution of (25) eluded our analysis so far, we will now resort to a
numerical analysis. For this purpose we discretize the equation

Qi
(n+1)(r,m, �σ) =


Qi

(n)(r,m, �σ)2−2 exp(−mr/2) +
�̃∏

j=1

Q
j

(n)(r,m, �σ)[Ĩ ij ]qij




1/2

(29)

and solve it iteratively in the usual fashion. Assuming convergence of this procedure the value
n → ∞ is identified with the exact solution of the recurrence relations (25). We start with
r = 0 and set the initial value Q

j

0 to be the analytically known (see section 4) solutions of
the constant TBA-equations. Once we have achieved convergence for a particular value of r,
we may increase this value by an amount δr and take always as a starting value the previous
solution of (29). It turns out that this procedure is extremely fast convergent even when the
particle number involved is very high. In comparison with the full TBA-equations, (29) are by
far easier to solve since they do not involve the complication of a convolution and correspond
technically at each value of r to a constant TBA-equation.

Figure 1 shows the numerical solution of (29) for various algebras and different choices
of the relative order of magnitude of the resonance parameters. We reproduce precisely the
same qualitative behaviour for the scaling function as obtained in the full TBA analysis [20]
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Figure 2. The decoupling of the A1|E6-theory.

and from the c-theorem [4, 23]. We recover all plateaux in the expected positions. In addition,
we have the important property, as seen in figure 1 for the SU(3)2-case, that a shift in σ by x
may be compensated by a shift in t by the same amount.

3.3. A1|E6 ≡ (E6)2-HSG

The approach presented in this section even allows us to tackle more complicated algebras with
relatively little effort, which in the full TBA analysis or the form factor approach constitutes a
considerable computational problem. We illustrate this by considering the A1|E6-theory.

In figure 2 we present the decoupling of this theory and report the Virasoro central charges
which are taken up along the flow as superscripts. In figure 3 we report the corresponding
numerical results of (22) and (23) for this theory for various different choices of the relative
order of magnitude of the resonance parameters. Our results precisely reproduce the central
charges of figure 2.

3.4. g|g̃-coset theories

Recalling now from section 2.2 the various ways in which we can represent the unitary series,
we may construct the flows between different cosets in a similar way as in the preceding
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Figure 3. RG-flow from q-deformed Virasoro characters.

Figure 4. Internal RG-flow for the N = 0, 1, 2 unitary minimal models.

section for a single homogeneous sine-Gordon theory. Figure 4 exhibits the flow along the
unitary series of the N = 0, 1, 2 superconformal minimal models.

From the realizations of the various cosets in terms of HSG-models it is also clear that we
may produce flows between the different series as suggested in [6] by alternative means. By
controlling the energy scale of the unstable particle, we obtain

MN=2(k, k + 1) ≡ A1|Dk+2/A1|Ak−1 ⊗ A1|A⊗2
1

−→
σk+1,k+2→∞

MN=1(k, k + 1) ≡ A1|Ak+1/A1|Ak−1 ⊗ A1|A1
−→

σk,k+1→∞
M(k, k + 1) ≡ A1|Ak/A1|Ak−1.

Our numerical results which reproduce these flows are presented in figure 5. It is this type of
flow which in [6] was realized as the so-called ‘Bailey flow’.
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Figure 5. RG-flow between N = 0, 1, 2 unitary minimal models.

4. The fixed point solutions

As we have mentioned, we do not have a general solution of (22) so far for the entire range
of r, but at each fixed point such expressions may be found. In [27, 28] it was noted that
the recurrence relations (6) admit closed analytical solutions in terms of some very distinct
mathematical objects, namely principally specialized Weyl characters. Since the proofs of
these identities are very often missing or only indicated in the literature, we find it instructive
to present various transparent proofs in this section. In addition, we present numerous new
solutions for theories treated before and for some hitherto not considered at all. We start by
assembling several properties of the characters which we utilize later to solve the recurrence
relations (6) or equivalently (22) in the range of r characterized by property (iii) in the
introduction.

4.1. Properties of Weyl characters

The characters for an irreducible representation Dλ of a simple Lie algebra g with rank � are
well known to be expressible in terms of the famous Weyl character formula, see e.g. [30],

χ̂λ [A(t)] = Tr[Dλ(g)] = Tr
[
Dλ
(
eiA(t)

)] =
∑

ω∈W(detω)eiω(λ+ρ)·t∑
ω∈W(detω)eiω(ρ)·t . (30)

Here g is an element of the Lie group, A(t) ∈ g,2 W denotes the Weyl group, λ is an
arbitrary weight and ρ = 1

2

∑
α∈1+

α = ∑�
i=1 λi is the Weyl vector with λi denoting the

fundamental weights. It is also known that, when computing the character for the principal
SU(2) subalgebra of g, see [31], the character (30) factorizes into the form

χ̂λ [τρ · H ] = χλ(τ ) =
∏
α∈1+

sin (α · (λ + ρ)πτ)

sin (α · ρπτ)
(31)

where 1+ is the set of positive roots. We refer to the particular expression χλ(τ ) of the Weyl
character as the principally specialized Weyl character (PSW-character). When considering λ

2 Due to fact that the elements of the group may be written as g = f hf−1 together with the cyclic property of the
trace, one can take A(t) = t · H to be an element of the Cartan subagebra.
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to be a fundamental weight λi , it is useful to employ the conventions χλ0 = χλ�+1 = 1 and set
χλ−n

= 0 for a positive integer n. When τ approaches 0, we obtain the well-known formula
for the dimension of the particular representation of the weight λ:

dim λ =
∏
α∈1+

α · (λ + ρ)

α · ρ . (32)

We now wish to establish various properties for the character χλ(τ ). It appears difficult
to carry out these studies on the generic expression (31) and we shall therefore resort to a
case-by-case analysis. Denoting by ε1, . . . , εn the standard orthonormal basis of R

n with
εi ·εj = δij , it is well-known that it is possible to represent the entire root system as vectors on
a suitably chosen lattice in R

n with one (simply laced) or two (non-simply laced) prescribed
lengths. We adopt the conventions of Bourbaki [32], which resulted historically from an
investigation of the adjoint representation of simple Lie algebras, which is the reason why
they do not always appear entirely obvious.

4.1.1. A�

We represent the roots of A� in R
�+1. According to [32] all positive roots are given by

εi − εj = α ∈ 1+ for 1 � i < j � � + 1. (33)

The fundamental weights and the Weyl vector are realized as

λk =
k∑

i=1

εi − k

� + 1

�+1∑
i=1

εi and ρ =
�+1∑
i=1

(�/2 + 1 − i)εi. (34)

Equipped with these quantities we can evaluate (31) and obtain more explicit formulae

χaλk
(τ ) =

∏
1�i<j��+1

sin[(εi − εj ) · (aλk + ρ)πτ ]

sin[(εi − εj ) · ρπτ ]
=

k∏
i=1

�∏
j=k

sin[(a + 1 + j − i)πτ ]

sin[(1 + j − i)πτ ]
. (35)

The last expression in (35) is best suited to establish various properties of the A�-related
characters,

χaλk
(τ ) = χaλk

(τ + 2) (36)

χaλk
(τ ) = χaλ�+1−k

(τ ) (37)

χ(a+1)λk
(τ ) = χaλk

(τ )

k∏
j=1

sin[(a + � + 2 − j)πτ ]

sin[(a + k + 1 − j)πτ ]
(38)

χaλk+1(τ ) = χaλk
(τ )

�∏
j=1+k

sin[(a + j)πτ ]

sin[jπτ ]

k∏
i=1

sin[(� + 1 − j)πτ ]

sin[(a + � + 1 − j)πτ ]
(39)

χaλk
(τ )χaλk

(τ ) = χ(a+1)λk
(τ )χ(a−1)λk

(τ ) + χaλk+1(τ )χaλk−1(τ ). (40)

Here (36) is obvious and (37)–(39) follow from simple shifts in (35). With the help of (38)
and (39) we can verify (40). Note that (36)–(40) hold for generic values of τ . We now also
want to identify χaλk

and χ(l̃+1−a)λk
for some integer l̃. This is, however, not true for generic

values of τ . Expressing χaλk
and χ(l̃+1−a)λk

in the form (35) and denoting the variables over
which the products are taken in the former by i, j and the latter by i ′, j ′, the two characters
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obviously coincide if (a + j − i)τ = 1 + (a − l̃ − 1 − j ′ + i ′)τ . From the available values
of i, j, i ′, j ′ the combination j + j ′ − i − i ′ = � + 1 constitutes a consistent solution of this
equation such that we have

χaλk

(
τ = 1

�+�̃+2

)
= χ(l̃+1−a)λk

(
τ = 1

�+�̃+2

)
. (41)

This means it is the symmetry of the Dynkin diagram which fixes the value of τ .

4.1.2. D�

We represent the roots of D� in R
�. According to [32] all positive roots are expressible as

εi ± εj = α ∈ 1+ for 1 � i < j � �. (42)

The fundamental weights are given by

λ�−1 =
�−1∑
i=1

εi − ε�

2
λ� = 1

2

�∑
i=1

εi λk =
k∑

i=1

εi for 1 � k � � − 2 (43)

such that the Weyl vector reads

ρ =
�−1∑
i=1

(� − i)εi. (44)

Substituting these quantities into (31) yields

χaλk
(τ ) =

∏
1�i<j��

sin[(εi − εj ) · (aλk + ρ)πτ ]

sin[(εi − εj ) · ρπτ ]

sin[(εi + εj ) · (aλk + ρ)πτ ]

sin[(εi + εj ) · ρπτ ]
(45)

from which we derive

χaλk
(τ ) =

∏
1�i<j�k

sin[(2a + 2� − i − j)πτ ]

sin[(2� − i − j)πτ ]

k∏
i=1

�∏
j=k+1

sin[(a + j − i)πτ ]

sin[(j − i)πτ ]

× sin[(2� + a − j − i)πτ ]

sin[(2� − j − i)πτ ]
1 � k � � − 2 (46)

χaλ�
(τ ) = χaλ�−1(τ ) =

∏
1�i<j��

sin[(2� + a − i − j)πτ ]

sin[(2� − i − j)πτ ]
. (47)

From (46) and (47) we can now deduce various properties of the D�-related characters,

χaλk
(τ ) = χaλk

(τ + 2) (48)

χaλ�
(τ ) = χaλ�−1(τ ) (49)

χaλ1(τ
′) =

∞∑
k=0

(−1)kχλa−2k (τ
′) a � � − 2 (50)

χλn+1(τ
′) = χ(n+1)λ1(τ

′) + χ(n−1)λ1(τ
′) (51)

χλ1(τ
′)χλ1(τ

′) = 2χλ2(τ
′) (52)

χλ�
(τ ′)χλ�

(τ ′) = 2
∞∑
k=0

χλ�−2−4k (τ
′). (53)

Here we have set τ ′ = 1/(4� − 4).
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4.1.3. E6

Following still [32] the roots and weights of E6 may be represented in R
8, where we

label the roots as depicted in the preceding Dynkin diagram. Since these expressions
are rather cumbersome, we refer the reader to the literature and report here only the
final expressions for the characters. Noting that all characters are of the general form∏

1�x<h sin(πτ(a + x))/ sin(πτx), with h being the Coxeter number, it is convenient to
use the following notation:

{
a
x1,1

1,1 , . . . , a
x1,b1
1,b1

; . . . ; axi,1
i,1 , a

xi,2
i,2 , . . . , a

xi,bi
i,bi

, . . .
}

:=
h−1∏
i=1

bi∏
j=1

(
sinπτ(ai,j + i)

sinπτi

)xi,j

. (54)

Note that all expressions we find have at least one xi,j �= 0 for each i ∈ [1, h − 1]. We
compute

χaλ1 = {a; a; a; a2; a2; a2; a2; a2; a; a; a} (55)

χaλ2 = {a; a; a2; a3; a3; a3; a3; a2; a; a; 2a} (56)

χaλ3 = {a; a2; a3; a4; a4; a3; a2, 2a; a, 2a; 2a; 2a; 2a} (57)

χaλ4 = {a; a3; a5; a5; a3, 2a; a, 2a2; 2a3; 2a2; 2a; 3a; 3a}. (58)

Here and in the following we suppress the τ -dependence of χ , i.e. we read χaλi
= χaλi

(τ ).

4.1.4. E7

Our conventions for naming the roots are the same as in [32] according to which we represent
the roots of E7 in R

8. We then compute

χaλ1 = {a; a; a; a2; a2; a3; a3; a3; a3; a3; a3; a2; a2; a; a; a; 2a} (59)

χaλ2 = {a; a; a2; a3; a4; a4; a5; a4; a4; a3; a2, 2a; a, 2a; a, 2a; 2a; 2a; 2a; 2a} (60)

χaλ3 = {a; a2; a3; a4; a5; a5; a4, 2a; a3, 2a; a2, 2a2; a, 2a2; 2a3; 2a2; 2a2; 2a; 2a; 3a; 3a}
(61)

χaλ4 = {a; a3; a5; a6; a5, 2a; a3, 2a2; a, 2a4; 2a4; 2a4; 2a2, 3a; 2a, 3a2; 3a2; 3a2; 3a; 4a;
4a; 4a} (62)

χaλ5 = {a; a2; a4; a5; a6; a5; a4, 2a; a2, 2a2; a, 2a3; 2a3; 2a3; 2a2; 2a, 3a; 3a; 3a; 3a; 3a}
(63)

χaλ6 = {a; a2; a2; a3; a4; a4; a4; a4; a3, 2a; a2, 2a; a2, 2a; a, 2a; 2a2; 2a; 2a; 2a; 2a} (64)

χaλ7 = {a; a; a; a; a2; a2; a2; a2; a3; a2; a2; a2; a2; a; a; a; a}. (65)
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4.1.5. E8

Our conventions for naming the roots are as in [32] according to which we represent the roots
of E8 in R

8. We compute

χaλ1 = {a; a; a; a2; a2; a3; a4; a4; a4; a5; a5; a5; a5; a4; a4; a4; a3, 2a; a2, 2a; a2, 2a;
a, 2a; a, 2a; a, 2a; 2a2; 2a; 2a; 2a; 2a; 2a; 2a} (66)

χaλ2 = {a; a; a2; a3; a4; a5; a6; a6; a6; a6; a5, 2a; a4, 2a; a3, 2a2; a2, 2a2; a, 2a3;
a, 2a3; 2a4; 2a3; 2a3; 2a2; 2a2, 2a; 3a; 2a; 3a; 3a; 3a; 3a; 3a; 3a; 3a} (67)

χaλ3 = {a; a2; a3; a4; a5; a6; a6, 2a; a5, 2a; a4, 2a2; a3, 2a3; a2, 2a4;
a, 2a4; 2a5; 2a4; 2a4; 2a3, 3a; 2a2, 3a; 2a, 3a2; 2a, 3a2;
3a2; 3a2; 3a2; 3a, 4a; 4a; 4a; 4a; 4a; 4a; 4a} (68)

χaλ4 = {a; a3; a5; a6; a6, 2a; a5, 2a2; a3, 2a4; a, 2a5; 2a6; 2a5, 3a; 2a4,

3a2; 2a2,3a3; 2a, 3a4;3a4; 3a3, 4a; 3a2, 4a2; 3a, 4a3;
4a3; 4a3; 4a2; 4a, 5a; 5a2; 5a2;5a; 6a; 6a; 6a; 6a; 6a} (69)

χaλ5 = {a; a2; a4; a6; a7; a7; a6, 2a; a4, 2a2; a2, 2a4; a, 2a5; 2a6;
2a5; 2a4, 3a; 2a2,3a2; 2a2, 3a3; 3a4; 3a4; 3a3; 3a2,

4a; 3a, 4a; 4a2; 4a2; 4a2; 4a; 5a; 5a; 5a; 5a} (70)

χaλ6 = {a; a2; a3; a4; a5; a6; a6; a6; a5, 2a; a4, 2a2; a3, 2a3; a2, 2a3; a, 2a4; 2a4;
2a4; 2a3, 3a; 2a3, 3a; 2a2, 3a; 2a, 3a2; 3a2; 3a2;
3a2; 3a2; 3a; 3a; 3a; 4a; 4a, ; 4a} (71)

χaλ7 = {a; a2; a2; a2; a3; a4; a4; a4; a5; a5; a4, 2a; a4, 2a; a4,

2a; a3, 2a; a2, 2a2;a2, 2a2; a2,

2a2; a, 2a2; 2a3; 2a2; 2a2; 2a2; 2a2; 2a; 2a; 2a; 2a; 3a; 3a} (72)

χaλ8 = {a; a; a; a; a; a2; a2; a2; a2; a3; a3; a3; a3; a3;a3; a3; a3; a3; a3; a2; a2; a2; a2;
a; a; a; a; a; a} (73)

4.2. Solution for the g|g̃-theories

As already indicated in section 3, when introducing the variables xi
a = ∏�

b=1

(
Qi

b

)−Kab the
constant TBA-equations (6), or equivalently (22) at certain fixed points, acquire the more
symmetric form

(
Qi

a

)2 =
�∏

b=1

(
Qi

b

)Iab +
�̃∏

j=1

(
Qj

a

)Ĩ ij
. (74)

It is convenient to take here Q0
a = Qi

0 = 1. We will now identify the Q’s with various
combinations of PSW-characters (74) either of the algebra g or g̃ such that the relations (74)
are solved. One should note here that in (74) the two algebras are on the same footing,
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despite the fact that on the level of the scattering matrix, i.e. the data which enter the Virasoro
characters (4) and in (23), they play quite distinct roles. We always choose

τ = 1

h + h̃
(75)

in (31), with h, h̃ being the Coxeter numbers of g, g̃, respectively. It will be sufficient
to concentrate on the g|g̃-theories, since the coset models reported in section 3.4 may be
constructed simply by means of a system of type (6). Having solved (74) we also compute
the (effective) central charge according to (23). In many cases this can be done analytically
by reducing the expression to some well known (see e.g. [11]) numerical relations for the
Rogers dilogarithm, such as L(1/2) = π2/12, L((

√
5 − 1)/2) = π2/10, etc. by a successive

application of the five-term relation

L (x) + L (y) = L (xy) + L
(
x(1 − y)

1 − xy

)
+ L

(
y(1 − x)

1 − xy

)
. (76)

In several cases we do not attempt to be entirely rigorous and only verify the relations
numerically. Especially when a generic rank is involved we only compute a large part of the
beginning of the sequence and do not attempt to perform inductive proofs.

We proceed case by case.

4.2.1. A�|A�̃. In this case the recurrence relations (74) are explicitly(
Qk

a

)2 = Qk
a+1Q

k
a−1 + Qk+1

a Qk−1
a (77)

for 1 � a � �, 1 � k � �̃. As was first pointed out in [27], by identifying the Q’s with
PSW-characters these relations may be solved explicitly. We may use either of the characters
χ, χ̃ of A�,A�̃, respectively, with τ = 1/(� + �̃ + 2),

Qk
a = χkλa

(τ ) = χ̃aλk
(τ ). (78)

This follows now immediately by noting that (77) coincides precisely with equation (40).
Using these solutions, the central charges according to (23) turn out to be

c = 6

π2

�∑
a=1

�̃∑
k=1

L
(
χ̃aλk−1(τ )χ̃aλk+1(τ )

χ̃aλk
(τ )2

)
= ��̃(�̃ + 1)

� + �̃ + 2
. (79)

4.2.2. A1|g̃-theories. For the reasons mentioned in the previous section, these particular
HSG-models are interesting to investigate. Exploiting the symmetry in equations (74), they
may be solved by appealing to the solutions which correspond to those of minimal affine Toda
field theories, i.e. g|A1. These solutions in terms of the PSW-characters of g may be extracted
from the general formulae provided in [27, 28]. The corresponding values were also stated
thereafter in the first reference in [14] without proof. We demonstrate that alternatively one
may simply use combinations of the characters of A1,

χkλ(τ ) = sin(π(1 + k)τ )

sin(πτ)
(80)

in order to solve the recurrence relations.
A1|A�̃. As a special case of (78) we obtain

Qi = χ̃λi
(1/(�̃ + 3)) = χiλ(1/(�̃ + 3)). (81)
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Translating to the x-variables we recover the values quoted in [14]. The particularization of
(23) yields the central charges

c = 6

π2

�̃∑
k=1

L(1 − χ̃λk
(1/(�̃ + 3))) = �̃(�̃ + 1)

�̃ + 3
. (82)

A1|D�̃. We may express the solutions for this case either in terms of the D�̃- or the
A1-PSW-characters. Taking τ = 1/2�̃, we obtain

Qi =
i+1
2∑

k=1

χ̃λ2k−1(τ ) = (i + 1)χλ2�̃−2
(τ ) = i + 1 i odd, i � �̃ − 2 (83)

Qi = 1 +

i
2∑

k=1

χ̃λ2k (τ ) = (i + 1)χλ2�̃−2
(τ ) = i + 1 i even, i � �̃ − 2 (84)

Q�̃−1 = χ̃λ�̃−1
(τ ) = Q�̃ = χ̃λ�̃

(τ ) =
√
�̃ =

�̃−1∏
k=1

χ(2k−1)λ/χ(�̃+k−1)λ. (85)

From the explicit expressions in section 4.1.2, it follows that χ̃λk(τ ) = 2 for k � �̃ − 2 and
the last relation in (85). Therefore, we may trivially evaluate the sums in (83) and (84), whose
result we can employ to convince ourselves that (74) is indeed satisfied. Once again translating
to the x-variables yields the values quoted in [14]. According to (23) the central charges are
then computed as

c = 6

π2


 �̃−3∑

k=1

L
(
k(k + 2)

(k + 1)2

)
+ L

(
�̃(�̃ − 2)

(�̃ − 1)2

)
+ 2L(1 − �̃−1)


 = �̃ − 1. (86)

A1|E6. Using the conventions of section 4.1.3, the recurrence relations (74) in this case
read

(Q1)2 = 1 + Q3 (Q2)2 = 1 + Q4 (Q3)2 = 1 + Q4Q1 (Q4)2 = 1 + Q2(Q3)2

(87)

where we have already exploitedQ1 = Q6, Q3 = Q5, which is a consequence of the symmetry
of the Dynkin diagram. For a = 1 and τ = 1/14, expressions (55)–(58) for the E6-characters
reduce to

χ̃λ1 =
(

2 sin
π

14

)−1
χ̃λ2 = χ̃λ3 = 2 cos

π

7
χ̃λ4 = 0 (88)

such that we can identify them with combinations of A1-characters and vice versa

χ̃λ1 = 1 + χ4λ − χ2λ χ̃λ2 = χ̃λ3 = χ2λ − 1. (89)

With these simple expressions for the characters, we may easily check that the expressions

Q1 = 1 + χ4λ − χ2λ Q2 = χ2λ Q3 = χ4λ Q4 = χ4λ + χ2λ (90)

indeed satisfy the relations (87). Of course, with the help of (89) it is also possible to express
the Q’s in terms of the χ̃ ’s instead of the χ’s. Then making use of the symmetry between the
two algebras in (74) and translating to the x-variables we recover the numerical values quoted
in [14]. Assembling this, the central charge according to (23) is computed as

c = 6

π2

(
2L
(

Q3

(Q1)2

)
+ L

(
Q4

(Q2)2

)
+ 2L

(
Q1Q4

(Q3)2

)
+ L

(
(Q3)2Q2

(Q4)2

))
= 36

7
. (91)
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A1|E7. With the conventions of section 4.1.4 the recurrence relations (74) in this case
read

(Q1)2 = 1 + Q3 (Q2)2 = 1 + Q4 (Q3)2 = 1 + Q4Q1 (Q4)2 = 1 + Q3Q5Q2

(92)

(Q5)2 = 1 + Q4Q6 (Q6)2 = 1 + Q7Q5 (Q7)2 = 1 + Q6. (93)

For a = 1 and τ = 1/20, the expressions (59)–(65) for the E7-characters simplify to

χ̃λ1 = χ̃λ6 = sin 3π
5

sin π
5

χ̃λ2 =
√

2 χ̃λ3 = χ̃λ4 = χ̃λ5 = 0 χ̃λ7 =
√

2

4 sin π
20 sin 9π

20

(94)

such that by recalling (80) we can identify them with combinations of A1-characters and vice
versa

χ̃λ1 = χ̃λ6 = χ4λ − χ2λ χ̃λ2 = χ5λ − χ3λ χ̃λ7 = χ9λ + χλ − χ7λ. (95)

With these simple expressions for the characters, we may once again verify after exploiting the
symmetry of (74) or by direct analysis with the A1-characters that the expressions proposed
in [28],

Q1 = 1 + χ̃λ1 Q2 = χ̃λ7 + χ̃λ2 Q3 = 1 + 3χ̃λ1 Q4 = 3 + 6χ̃λ1 (96)

Q5 = 2χ̃λ7 + 2χ̃λ2 Q6 = 1 + 2χ̃λ1 Q7 = χ̃λ7 (97)

indeed satisfy (92)–(93)3. Renaming our roots and translating to the x-variables, we recover
the numerical values quoted in [14]. The central charge (23) in this case is

c = 6

π2

(
L
(

3
√

5 − 5

2

)
+ L

(
3
√

5 − 3)

4

)
+ L

(
3
√

5 + 3)

10

)
+ L

(
4
√

5

9

)

+L
(

3(3 +
√

5)

16

)
+ L

(
1 +

√
5

4

)
+ L(4(

√
5 − 4))

)
= 63

10
. (98)

A1|E8. The recurrence relations (74) read now

(Q1)2 = 1 + Q3 (Q2)2 = 1 + Q4 (Q3)2 = 1 + Q1Q4 (Q4)2 = 1 + Q3Q2Q5

(99)

(Q5)2 = 1 + Q4Q6 (Q6)2 = 1 + Q5Q7

(Q7)2 = 1 + Q6Q8 (Q8)2 = 1 + Q7. (100)

When setting a = 1 and τ = 1/32, the E8-characters (66)–(73) reduce to

χ̃λ1 = 1 χ̃λ8 =
√

2 χ̃λ2 = χ̃λ3 = χ̃λ4 = χ̃λ5 = χ̃λ6 = χ̃λ7 = 0. (101)

We may then identify them with combinations of A1-characters

χ̃λ1 = χ30λ χ̃λ8 = χ8λ − χλ. (102)

With these numerical values we can express the solutions of (99) and (100) in terms of the
E8/A1-characters

Q1 = 2 + χ̃λ8 Q2 = 3 + 2χ̃λ8 Q3 = 5 + 4χ̃λ8 Q4 = 4
(
4 + 3χ̃λ8

)
(103)

Q5 = 3
(
3 + 2χ̃λ8

)
Q6 = 5 + 3χ̃λ8 Q7 = 2 + 2χ̃λ8 Q8 = χ̃λ1 + χ̃λ8 . (104)

In [28] only the values for Q1 and Q8 were presented. As in the previous case, after relabelling
our roots and translating to the x-variables we recover the numbers quoted in [14]. In this case
3 There appears to be a small typo in equation (A.11.c) of [28], which reads when translated to our conventions, i.e.
6 → 7, Q7 = χλ1 instead of (97).
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the central charge (23) equals

c = 6

π2

(
L
(√

2 − 1

2

)
+ L(12

√
2 − 16) + L

(
40

√
2 − 8

49

)
+ L

(
12

√
2 + 15

32

)

+L
(

12
√

2 − 8

9

)
+ L

(
30

√
2 + 6

49

)
+ L

(
1

4
+

1√
2

)
+ L(2

√
2 − 2)

)
= 15

2
.

(105)

4.2.3. D�|A�̃. In this case the recurrence relations (74) read(
Qk

a

)2 = Qk
a+1Q

k
a−1 + Qk+1

a Qk−1
a 1 � a � � − 3 (106)(

Qk
�−2

)2 = Qk−1
�−2Q

k+1
�−2 + Qk

�Q
k
�−1Q

k
�−3 (107)(

Qk
p

)2 = Qk
�−2 + Qk+1

p Qk−1
p p = �, � − 1 (108)

for 1 � k � �̃. Also in this case we may exploit the symmetry of equations (74) in the
two algebras. We simply have to exchange their roles in order to obtain a solution for the
D�|A�̃-theory from the one for the A�̃|D� reported in [27, 28]. Taking τ = 1/(2� + �̃− 1), we
can express, following [27, 28], the Q’s in terms of the PSW-characters of D�.

Qk
s =

k∑
l1=0

· · ·
k∑

ls−2=0

χkλs + l1(λ1 − λs)+···+ls − 2(λs − 2 − λs)(τ ) (109)

Qk
p =

k∑
ã=0

ã∑
l2=0

· · ·
ã∑

lp − 2=0

χãλp+l2(λ2 − λp)+···+lp−2(λp−2−λp)(τ ) (110)

Qk
�−1 = χkλ�−1(τ ) Qk

� = χkλ�
(τ ). (111)

Here s and p are odd and even integers smaller than �− 1, respectively. Alternatively, we may
also express the Q’s in terms of the A�̃-PSW-characters. For instance, for D�|A2 we find

Q1
2k = Q2

2k = 1 +
k∑

i=1

(
χ̃iλ − χ̃(i−2)λ + χ̃(�−i)λ − χ̃(�−i−2)λ

)
2k < � − 1 (112)

Q1
2k−1 = Q2

2k−1 =
k−1∑
i=0

(
χ̃iλ − χ̃(i−2)λ

)
+

k∑
i=1

(
χ̃(�−i)λ − χ̃(�−i−2)λ

)
2k < � (113)

Q1
� = Q1

�−1 = Q2
� = Q2

�−1 = χ̃�λ − χ̃(�−2)λ. (114)

We suppressed the τ -dependence, denote λ = λ1 = λ2 and recall that we take χ̃iλ = 1 for
i = 0 and χ̃iλ = 0 for i < 0.

Let us now consider some theories which may not be obtained from the others previously
studied, by exploiting the symmetry properties of the recurrence relations (74).

4.2.4. D�|D�̃. The recurrence relations (74) are now constructed from the symmetric
Dl-incidence matrix, whose non-vanishing entries are

Î t,t+1 = 1 1 � t � l − 2 Î t,t−1 = 1 2 � t � l − 1 Î l,l−2 = 1 (115)

such that I = Î with l = � and Ĩ = Î with l = �̃.
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D4|D4. For the choice τ = 1/12 the D4-characters (46) and (47) become

χλ1 = 3 +
√

3 χ2λ1 = 5 + 3
√

3 χ3λ1 = 6 + 4
√

3 χλ2 = 6 + 3
√

3 (116)

χ2λ2 = 15 + 9
√

3 χ3λ2 = 10 + 6
√

3 χλ3 = χλ1 χ2λ3 = χ2λ1 χ3λ3 = χ3λ1 .

(117)

The recurrence relations (74) are solved by

Q1
1 = Q3

1 = Q4
1 = Q1

3 = Q1
4 = Q3

3 = Q3
4 = Q4

3 = Q4
4 = 4χλ1 − χ3λ1 = 6 (118)

Q2
1 = Q2

3 = Q2
4 = Q3

2 = Q1
2 = Q4

2 = 18 Q2
2 = 108. (119)

The central charge (23) in this case is simply

c = 6

π2

(
10L

(
1

2

)
+ 3L

(
2

3

)
+ 3L

(
1

3

))
= 8. (120)

D4|D5. We now take τ = 1/14 such that some of the D4-characters (46) and (47) read

χλ1 = sin 2π
7 sin 3π

7

sin π
14 sin 3π

14

χ2λ1 = 2χλ1 cos
π

7
sin

5π

14
= χ4λ1

2
χ3λ1 = χ4λ1 cos2 3π

7

sin 5π
14

(121)

χλ2 = χ2λ1 = χ4λ2

4
χ2λ2 = χ2λ1 sin2 5π

14 sin 2π
7

sin 3π
14 sin2 π

7

χ3λ2 = χ2λ2 sin2 3π
7

sin 5π
14 sin2 2π

7

(122)

and the ones for D5

χ̃λ1 = sin 5π
14 sin 3π

7

sin π
14 sin 2π

7

χ̃2λ1 = χ̃λ1

sin 3π
7

sin π
7

χ̃3λ1 = χ2λ1 (123)

χ̃λ2 = χ̃λ1

sin 5π
14 sin 2π

7

sin 3π
14 sin π

7

χ̃2λ2 = 2χ̃2λ1

cos 3π
14

sin π
7

χ̃3λ2 = (χ̃λ2)
2

χ̃λ1

(124)

χ̃λ3 = 2χ̃λ2 cos
π

7
χ̃2λ3 = χ̃3λ2

2
χ̃3λ3 = χ̃2λ1

2
(125)

χ̃λ4 = sin2 3π
7

sin π
14 sin 3π

14

χ̃2λ4 = χ̃2λ1

1

sin
(

3π
14

) χ̃3λ4 = χ3λ1 . (126)

We may then express the PSW-characters of D5 in terms of characters of D4,

χ̃λ1 = (
χ3λ1 − χλ2

) /
2 χ̃2λ1 = (

χ3λ1 − 2
) /

2 χ̃3λ1 = χ2λ1

χ̃λ2 = (
χ3λ1 + χλ2 − 2χλ1 − 2

) /
2 χ̃2λ2 = (

χ3λ2 − χ3λ1

) /
2

χ̃3λ2 = (−10χλ1 + 9
(
χ2λ1 − 1

)
+ 6χ3λ1 − χ2λ2

)/
2 (127)

χ̃λ3 = χ3λ1 − 1 χ̃2λ3 = 2χ4λ1 χ̃3λ3 = (
χ3λ1 − 2

) /
2

χ̃λ4 = (
χ3λ1 − 2χλ1

) /
2 χ̃2λ4 = χ3λ1 − χλ1 − 1 χ̃3λ4 = χ3λ1 .

In terms of these quantities we may then solve the recurrence relations by

Q1
1 = 1 + χλ1

Q2
1 = 6

(
χ3λ1 + χ3λ2 + 1

)− 10
(
χλ1 + χ2λ1 + χ4λ1

)
+ 4χ2λ2 − 9χ4λ2

Q3
1 = 2

(
2 − χλ1 + χ2λ1 + χ2λ2 − χ3λ2 + χ4λ2

)
Q4

1 = 10
(
χ2λ2 − χ3λ1 − χ4λ1 − χ4λ2

)− 8χλ1 − 5χ2λ1 + 6χ3λ2 − 7

Q1
2 = 8

(
χ2λ2 − χλ1 − χ4λ1 − χ4λ2 + 1

)
+ 5

(
χ3λ1 − χ2λ1

)
+ 2χ3λ2

Q2
2 = 8

(
χ3λ2 + χ3λ1 − χλ1 − χ4λ2

)− 5χ4λ1 − 4χ2λ2 + 2 (128)
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Q3
2 = 6

(
χλ1 + χ4λ1 + χ4λ2

)
+ 4χ2λ1 − 2χ3λ1 + 1

Q4
2 = Q5

2 = 6
(
χ4λ2 − χ2λ2

)
+ 4

(
χλ1 + χ4λ1

)− χ3λ2 + χ3λ1

Q1
3 = Q1

4 = Q1
1 Q2

3 = Q2
4 = Q2

1 Q4
3 = Q5

3 = Q4
1 = Q4

4 = Q5
4

Q3
3 = Q3

4 = Q3
1.

Using these values we compute numerically the central charge as c = 80/7.
D5|D5. For τ = 1/16 and � = 5, the D5-PSW-characters (46) and (67) become

χλ1 =
√

2
sin 5π

16

sin π
16

χ2λ1 = 4 + 3
√

2 + 2

√
10 + 7

√
2

χ3λ1 = 8 + 5
√

2 +
√

2(58 + 41
√

2) χ4λ1 = 2χ2λ1

χλ2 = χ2λ1 + 1 χ2λ2 = 22 + 17
√

2 + 2

√
274 + 193

√
2

χ3λ2 = 46 + 32
√

2 + 6

√
116 + 82

√
2 χ4λ2 = 4 + 6χ2λ1

χλ3 = 2 + 2χλ2 χ2λ3 = 61 + 41
√

2 + 6

√
194 + 137

√
2 (129)

χ3λ3 = 100 + 69
√

2 + 13

√
116 + 82

√
2 χ4λ3 = χ4λ2

χλ4 = 2(1 +
√

2 +

√
2 +

√
2) χ2λ4 = χ3λ1 χ3λ4 = 2χ3λ1

χ4λ4 = 18 + 14
√

2 + 6

√
20 + 14

√
2.

Noting the symmetry Qi
a = Qa

i , we may now express the Q’s in terms of D5-characters:

Q1
1 = 2

(
χλ2 − χλ1 − χλ4

)
Q2

1 = 2
(
χ2λ3 + χλ4 − χλ1 − χ2λ1 − χ3λ1 − χ2λ2

)− χ4λ1 − χ3λ4 − χ4λ4

Q3
1 = 2

(
χ3λ3 − χλ1 − χ2λ1 − χ3λ1 − χ4λ1 − χ2λ2 − χλ4 − χ4λ4

)
+ χ3λ4 − χλ2 − χ2λ3

Q4
1 = Q5

1 = χ4λ1 + χ3λ2 + χ2λ3 − χλ1 − χ2λ1 − χλ2 − χ3λ3 − χλ4

Q2
2 = 2

(
χ4λ1 + χ2λ2 + χ2λ3 + χλ4 + χ4λ4 − χλ1 − χ2λ1 − χ3λ1 − χ4λ2 − χ3λ4

)
+χ3λ2 − χλ2 − χ3λ3

Q3
2 = 2

(
χ3λ2 + χ3λ3 + χ3λ4 − χλ1 − χ2λ1 − χ4λ1 − χ2λ2 − χλ4 − χ4λ4

)
+χ2λ3 − χ3λ1 − χλ2 − 1 (130)

Q4
2 = Q5

2 = 1 + χλ1 + χ4λ1 + χ3λ2 + χ2λ3 + χ4λ4 − χ2λ2 − χ3λ3

Q3
3 = 8

(
χ2λ3 + χ3λ3 + χ4λ4 − χλ1 − χ2λ1 − χ3λ1 − χ4λ1 − χλ2 − χ2λ2

)
+ 7

(
χ3λ2 + χ4λ2 + χ3λ4

)− 5χλ4 + 4

Q4
3 = Q5

3 = χ4λ1 + χ3λ2 + χ2λ3 − χ2λ1 − χλ2 − χ2λ2 − χ4λ2 − χ4λ4

Q5
5 = Q4

4 = Q5
4 = 1 + χλ1 + χ4λ1 + χλ2 + χ2λ2 + χ4λ4 − χ3λ1 − χ3λ2 .

Using these values we compute numerically the central charge as c = 25/2.

4.2.5. D4|E6. In this case recurrence relations (74) read(
Q1

1

)2 = Q1
2 + Q2

1

(
Q2

1

)2 = Q2
2 + Q4

1

(
Q3

1

)2 = Q3
2 + Q4

1Q
1
1 (131)(

Q4
1

)2 = Q4
2 + Q2

1

(
Q3

1

)2 (
Q1

2

)2 = Q1
4 + Q2

2

(
Q2

2

)2 = Q2
4 + Q4

2 (132)(
Q3

2

)2 = Q3
4 + Q4

2Q
1
2

(
Q4

2

)2 = Q4
4 + Q2

2

(
Q3

2

)2
. (133)
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We already took the relations

Q1
a = Q6

a Q3
a = Q5

a Qi
1 = Qi

3 = Qi
4 1 � a � 4, 1 � i � 6 (134)

into account which arise as a consequence of the symmetries of the D4 and E6 Dynkin
diagrams. Taking now τ = 1/18, � = 4 and �̃ = 6, the D4-characters turn out to be

χλ1 =
√

3
sin 2π

9

sin π
18

χ2λ1 =
√

3
sin 5π

18 sin 7π
18

sin π
18 sin π

9

χ3λ1 =
√

3χ2λ1

sin 4π
9

sin 5π
18

χ4λ1 = 2√
3
χ3λ1

sin 7π
18

sin 2π
9

χ5λ1 = χ4λ1

sin2 4π
9

sin 7π
18 sin 5π

18

χ6λ1 = 2√
3
χ5λ1

sin 7π
18

sin 4π
9

χλ2 = 1

6
χ3λ1

tan 2π
9

sin π
9

χ2λ2 = 2

3
χ3λ2

sin2 2π
9

sin2 7π
18

χ3λ2 =
√

3χ2
2λ1

sin π
18

sin π
9

(135)

χ4λ2 =
√

3

2
χ4λ1χ2λ1

sin π
18

sin π
9

χ5λ2 = 2

3
χ4λ2

sin2 4π
9

sin2 5π
18

χ6λ2 = 4√
3
χ5λ2

sin 4π
9 sin π

18

sin2 7π
18

and the E6-characters are

χ̃λ1 =
√

3

2 sin 2π
9 sin π

18

χ̃λ2 = 4√
3
χ̃λ1 sin

5π

18
sin

4π

9
χ̃λ3 = 3

4
χ̃λ2

cos π
9

cos 2π
9

(136)

χ̃λ4 = 8

3
χ̃λ2χ̃λ3

sin π
18 cos π

9

sin 7π
18

χ̃2λ1 = 4χ̃λ1 cos
2π

9
cos

π

9
χ̃2λ2 = 2χ̃2λ1 (137)

χ̃2λ3 = 2
√

3χ̃3λ1

cos 2π
9

sin 5π
18

χ̃2λ4 = 36χ̃2
3λ2

cos2 2π

9
χ̃3λ1 = 2

sin 4π
9 sin 7π

18

sin π
18 sin π

9

(138)

χ̃3λ2 = χ̃3λ3 = χ̃3λ1 + 2 = sin 5π
18 sin 7π

18

sin 4π
9 sin π

9

χ̃3λ4 = χ̃2λ4 (139)

such that we find the following relations amongst them:

χ̃λ1 = 1 − 2
(
χλ1 − χ5λ1 − χλ2 + χ2λ2 − χ3λ2 + χ6λ2

)− χ3λ1

χ̃λ2 = 2
(
χ5λ1 − χ2λ1 − χ2λ2 − χ6λ2

)
+ χ5λ2

χ̃λ3 = 2
(
χλ1 − χ2λ1 + χ5λ1 − χ2λ2 − χ3λ2 + χ5λ2 − χ6λ2 + 1

)
χ̃λ4 = 2

(
1 − χλ1 − χ2λ1 − χ3λ1 + χ4λ1 + χ5λ1 + χλ2 − χ2λ2 + χ3λ2 − χ6λ2

)
χ̃2λ1 = 2

(
χ5λ1 − χλ1 − χ2λ1 − χ3λ1

)
+ χ4λ1 − χ2λ2 (140)

χ̃2λ3 = 2
(
χ5λ1 − χλ1 − χ2λ1 − χ3λ1

)− χ4λ1 + χ2λ2

χ̃2λ4 = 2
(
1 − χλ1 − χ2λ1

)− χ3λ1 + χ4λ1 + χ6λ1

χ̃3λ1 = 2
(
χ4λ1 + χ6λ1 − χλ1 − χ2λ1 − χ3λ1 − χ5λ1

)
χ̃3λ2 = χ̃3λ3 = 2 + χ̃3λ1 .

The recurrence relations (131)–(133) are then solved by

Q1
1 = 2χλ2 − χλ1 − χ2λ1

Q2
1 = χ5λ1 + χλ2 + χ6λ2 − χλ1 − χ2λ1 − χ3λ1 − χ3λ2

Q3
1 = χλ1 + χ2λ1 + χ6λ1 + χ4λ2 − χ5λ2 − 1

Q4
1 = 1 − χ4λ2 − 2

(
χλ1 + χ2λ1 + χ3λ1 + χ4λ1 + χ5λ1 − χ6λ1 + χ2λ2 − χ5λ2

)
Q1

2 = 1 + χλ1 + χ2λ1 + χ4λ1 − χ5λ1 + χ2λ2 + χ4λ2 − χ5λ2 (141)

Q2
2 = χλ1 + χ2λ1 − χ3λ1 − χ4λ1 + χ5λ1 + χ6λ1 + χλ2 + χ3λ2 − χ4λ2 + χ6λ2 − 1
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Q3
2 = 2

(
χ3λ2 + χ5λ2 − χλ1 − χ2λ1 − χ3λ1 − χ4λ1 − χ6λ2

)− χ5λ1 − χ6λ1 − χ2λ2

Q4
2 = 8

(
χ3λ2 + χ4λ2 + χ5λ2 − χλ1 − χ2λ1 − χ3λ1 − χ4λ1 − χ5λ1 − χλ2 − 1

)
− 7χ6λ1 + 6χ6λ1 .

Using these values we compute numerically the central charge as c = 16.

5. Unstable quasi-particles

Once a character is expressed in the generic form (4), it does not only allow a derivation of the
constant TBA equations, but also, when interpreted as a partition function, one may construct
quasi-particle spectra of different statistical nature. We proceed in the usual fashion, but we
will now introduce as the main novelty also unstable quasi-particles inside the spectrum. As
usual [7] we parametrize the partition functionχ(q = e2πv/ktL) by Boltzmann’s constant k, the
temperature T, the size of the quantizing system L and the speed of sound v. We then equate
it with

∑∞
n=0 P(En) exp(−En/kT ), where P(En) denotes the degeneracy of the particular

energy level En = En(pA) as a function of the single particle contributions of type A. It is
the aim in this analysis to identify the spectrum expressed in terms of the pA. Technically
this can be achieved by making use of the expressions for the number of partitions Qs (n,m)

(Ps(n,m)) of the positive integer n into m non-negative (distinct) integers smaller or equal to
s (see e.g. [8]):

∞∑
n=0

Ps(n,m)qn = qm(m−1)

[
s + 1
m

]
q

∞∑
n=0

Qs(n,m)qn =
[
s + m

m

]
q

. (142)

Introducing in the standard way [7] some internal quantum numbers, we construct for instance
(in units of 2π/L) a purely fermionic

pa
Na
(�k) = 1

2 ([Mab]q − δab)kb + 1
2 + Ba + Na (143)

or purely bosonic

pa
Na
(�k) = 1

2 [Mab]qkb + Ba + N̂a (144)

quasi-particle spectrum. The positive integers Na and N̂a are constrained from above as Na <

Int((1 − [Mab]q) kb + B ′
a) and N̂a � Int((1 − [Mab]q) kb + ma + B ′

a), with Int(x) to be the
integer part of x. Like in the non-deformed case, it is of course also possible to construct
spectra related to more exotic or even with mixed statistics.

We now expect that at a certain energy scale some unstable particles vanish from the
spectrum. The mechanism for this is that the upper boundsNa, N̂a involved in the expressions
for the possible momenta pa

Na
(�k), pa

N̂a
(�k) decrease. We illustrate this with some examples.

Denoting the character for the vacuum sector of the minimal modelM(k, k+1) by χk(q) [35],
we compute for instance

χ2(q) − χ1(q) = q6 + q7 + 2q8 + 3q9 + 5q10 + 6q11 + 9q12 + 11q13 + 16q14

+ 20q15 + 27q16 + 33q17 + 44q18 + 54q19 + 70q20 + O(q21). (145)

This means, for example, comparing χ1(q) and χ2(q) one particle should vanish from
the spectrum of M(2, 3) at level 6 when we vary the value of the resonance parameter
such that it flows to M(1, 2). Indeed, in the purely fermionic spectrum, we have the
possibility of a six-particle contribution involving four particles of type 1 and two of type
2 with N2 < Int

(
2
[
(1 − exp(−r/2m2)) + exp

( − r/2e|σ12|/2
)])

. This means for rm2/2 � 1
and r/2e|σ12|/2 � 1 the state∣∣p1

0(4, 2), p1
1(4, 2), p1

2(4, 2), p1
3(4, 2), p2

0(4, 2), p2
1(4, 2)

〉
(146)
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is allowed. It is then clear that when we increase σ12, this state disappears from the spectrum.
At the same time the state∣∣p1

0(4, 2), p1
1(4, 2), p1

2(4, 2), p1
4(4, 2), p2

0(4, 2), p2
1(4, 2)

〉
(147)

at level 7 and the two states∣∣p1
0(4, 2), p1

1(4, 2), p1
2(4, 2), p1

5(4, 2), p2
0(4, 2), p2

1(4, 2)
〉

(148)∣∣p1
0(4, 2), p1

1(4, 2), p1
3(4, 2), p1

4(4, 2), p2
0(4, 2), p2

1(4, 2)
〉

(149)

at level 8, etc vanish for the same reason.

6. Conclusions

We have demonstrated that it is possible to construct scaling functions which reproduce the
renormalization group flow by q-deforming fermionic versions of Virasoro characters in a very
natural way. We investigated a fairly generic class of theories related to a pair of simple simply
laced Lie algebras g and g̃ or associated coset models. The construction procedure relies on
the fact that the characters, quantities of the massless theory, involve data of the massive theory,
i.e. the phases of the S-matrices. At the fixed points of these flows we solved the relevant
recurrence relations analytically in terms of PSW-characters. We provided here various new
solutions for particular choices of the algebras involved. It would be extremely interesting
to answer the question whether it is possible to solve these relations in a completely generic,
i.e. case-independent fashion. One should note that our solutions admit various ambiguities,
i.e. the sums are not unique since there are numerous character identities involved or they
might be expressed in terms of direct products of characters in a Clebsch–Gordan sense.
This arbitrariness might be eliminated when one possibly finds a deeper interpretation of the
recurrence relation in terms of representation theory.

Furthermore, it would be interesting to investigate whether it is possible to modify the
PSW-characters, for instance by a specific choice of the τ ’s, in such a way that they solve
the full r-dependent recurrence relations (22) exactly. Noting that our scaling functions only
coincide qualitatively with those obtained from the full TBA analysis, in the sense that they
have the plateaux precisely in the same position, including their size in the r-direction, one
may ask a stronger question: is it possible to find versions of PSW-characters such that the
full TBA equations, i.e. their formulation in terms of so-called Y-systems (see e.g. [34]), are
reproduced?

The functions we constructed allow for a far easier investigation of the RG-behaviour
than the full TBA-system [2], the scaled c-theorem [3, 4] or the semiclassical analysis [5].
This allows us to investigate systems of more complex nature such as A1|E6 or flows between
different supersymmetric series. It would be interesting to investigate the latter flow in the
other approaches.

The level-rank duality of type (12) gives a hint why it is possible to obtain the same flow
by means of a theory involving unstable particles and alternatively as massless flows in the
sense of [19]. The concrete link, however, i.e. the question of how this duality is reflected in
the massive models, that is the scattering matrix, still eludes our analysis.

We have also shown that our q-deformed characters allow for the construction of spectra,
which also involve unstable quasi-particles. The ‘decay’ of these particles from the spectrum
is governed by a variable bound on the momenta depending on the resonance parameter.

Concerning the specific theories investigated, it would be of interest to extend the
analysis to models which also involve non-simply laced algebras, albeit for g non-simply
laced consistent S-matrices have not been constructed at present.
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